Dose-banding of cytostatic drugs

9th BOPP days – February 19th-20th 2016

David Devolder PharmD
apo.oncologie@uzleuven.be
Overview

• General aspects
• Dose-banding as a concept
• Perspectives

• Pilot project at UZ Leuven
• Key points
Approach to prescribing chemotherapy

• Traditional calculation based on BSA*
 – Body weight and height
 – Different formulas
 – Estimation versus measurement
 – Obesity and cachexia?

* except Carboplatin (AUC, creat), Thiotepa (mg/kg)
Which formula to choose?

Note: Variance between formulae is greatest for short ‘stocky’ individuals (-9.59% to +5.94%) but in practice BSA may be capped at 2.2 unless the body weight is muscle. Variance may approach 5% in tall thin individuals. This inherent variance is hidden by rounding BSA to one decimal place.

Figures adopted from Gillian, A. (2008), UTD (accessed 2/7/2015)
Potential sources of variability in chemotherapy dosing

<table>
<thead>
<tr>
<th>Factor</th>
<th>Potential variation</th>
<th>Examples of potential sources of variability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient weight, height, BSA</td>
<td>±10%</td>
<td>Shoes, clothing, time of day, calibration, method of BSA calculation</td>
</tr>
<tr>
<td>PK/PD</td>
<td>±15%</td>
<td>Pharmacogenetics, disease effects, hepatic or renal dysfunction, comorbidities</td>
</tr>
<tr>
<td>Vial contents</td>
<td>±15%</td>
<td>Manufacturer, vial type, aseptic technique</td>
</tr>
<tr>
<td>Syringe/infusion bag accuracy</td>
<td>±5%</td>
<td>Manufacturer, type, size, user</td>
</tr>
<tr>
<td>Residual volume during administration</td>
<td>±5%</td>
<td>Filter adsorption, administration set, inadequate flushing of line</td>
</tr>
</tbody>
</table>

Table adapted from Zavery & Marsh (2011)
Must patients be given exactly the prescribed dose?

- Is prescribed dose:
 - Scientifically based: controversy on individualised dosing algorithms?
 - Clinically important: impact on outcome of tailor-made versus standard strength?
- Can pharmacy prepare exactly the prescribed dose?
- Is the exact dose ever administrated to patients?

Figure adopted from Mathijssen et al. (2007)
Dose-banding: what’s in a name?

A system whereby

- Through agreement between prescribers and pharmacists,
- Doses of intravenous cytostatic drugs calculated on an individualized basis (from BSA or other criteria), are grouped into defined ranges or bands,
- Doses are rounded up or down to predetermined standard doses,
- The maximum variation of the adjustment between the standard dose and the doses constituting each band is (usually) 6% or less.

≠ Dose-rounding!

Figure adopted from Bins, S. et al. (2014)
A step towards standardisation

- Cytostatic drugs are high risk medication
- Standardisation as a mean to reduce the risk for possible errors during:
 - Prescribing
 - Preparation
 - Administration
- Pragmatic approach to standardise where we can, to provide medication on time and use freed-up time to focus on difficult and individualised therapies
- Already common for targeted therapies
Methods of dosing

- (Flat/fixed dosing: -Mabs/oral chemotherapy)
- Linear model
 - BSA based
 - Target dose based
- Logarithmic model
 - Modified
Linear dose-banding

- BSA based dose-banding
 - Band = BSA-interval (increments of BSA, e.g. [1.45-1.54m²]; [1.55-1.64m²],…)
 - Patient’s BSA is rounded up or down to one decimal place and a set dose band given for that BSA (e.g. 1.5m²; 1.6m²,…)
 - e.g. Doxorubicin 50mg/m²
 - BSA 1.73m² = 1.7m² → band dose = 85mg (1.8% deviation)

<table>
<thead>
<tr>
<th>BSA (m²)</th>
<th>BSA Range</th>
<th>50</th>
<th>50</th>
<th>60</th>
<th>60</th>
<th>75</th>
<th>75</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.4</td>
<td>1.40-1.44</td>
<td>70</td>
<td>-2.7</td>
<td>85</td>
<td>-1.6</td>
<td>110</td>
<td>+4.8</td>
</tr>
<tr>
<td>1.5</td>
<td>1.45-1.54</td>
<td>75</td>
<td>+3.4</td>
<td>90</td>
<td>+3.4</td>
<td>110</td>
<td>-4.8</td>
</tr>
<tr>
<td>1.6</td>
<td>1.55-1.64</td>
<td>80</td>
<td>+3.2</td>
<td>95</td>
<td>-3.5</td>
<td>120</td>
<td>+3.2</td>
</tr>
<tr>
<td>1.7</td>
<td>1.65-1.74</td>
<td>85</td>
<td>+3.0</td>
<td>100</td>
<td>-4.2</td>
<td>130</td>
<td>+5.1</td>
</tr>
<tr>
<td>1.8</td>
<td>1.75-1.84</td>
<td>90</td>
<td>+2.9</td>
<td>110</td>
<td>+4.8</td>
<td>135</td>
<td>+2.9</td>
</tr>
<tr>
<td>1.9</td>
<td>1.85-1.94</td>
<td>95</td>
<td>+2.7</td>
<td>115</td>
<td>+3.6</td>
<td>140</td>
<td>-3.8</td>
</tr>
<tr>
<td>2.0</td>
<td>1.95-2.04</td>
<td>100</td>
<td>+2.6</td>
<td>120</td>
<td>+2.6</td>
<td>150</td>
<td>+2.6</td>
</tr>
<tr>
<td>2.1</td>
<td>2.05-2.14</td>
<td>105</td>
<td>+2.4</td>
<td>125</td>
<td>-2.6</td>
<td>160</td>
<td>+4.1</td>
</tr>
<tr>
<td>2.2</td>
<td>2.15-2.2</td>
<td>110</td>
<td>+2.3</td>
<td>130</td>
<td>+0.7</td>
<td>165</td>
<td>+2.3</td>
</tr>
</tbody>
</table>
Linear dose-banding

- **Target dose based banding**
 - Band = **dose-interval**
 - Individual dose is rounded up or down to the nearest target dose
 - e.g. Doxorubicin 50mg/m²
 - BSA 1.73m² = 86.5mg
 - Bandwidth = [82.6-87.5]
 - → target dose = 85mg (1.8% deviation)

<table>
<thead>
<tr>
<th>CHOP (50mg/m²) Surface area (m²)</th>
<th>Dose range (mg)</th>
<th>Banded dose (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>27.6 - 32.5</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>32.6 - 37.5</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>37.6 - 42.5</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>42.6 - 47.5</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>47.6 - 52.5</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>52.6 - 57.5</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>57.6 - 62.5</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>62.6 - 67.5</td>
<td>65</td>
</tr>
<tr>
<td>1.35 – 1.45</td>
<td>67.6 - 72.5</td>
<td>70</td>
</tr>
<tr>
<td>1.46 - 1.54</td>
<td>72.6 - 77.5</td>
<td>75</td>
</tr>
<tr>
<td>1.55 – 1.64</td>
<td>77.6 - 82.5</td>
<td>80</td>
</tr>
<tr>
<td>1.65 – 1.74</td>
<td>82.6 - 87.5</td>
<td>85</td>
</tr>
<tr>
<td>1.75 – 1.84</td>
<td>87.6 - 92.5</td>
<td>90</td>
</tr>
<tr>
<td>1.85 – 1.94</td>
<td>92.6 - 97.5</td>
<td>95</td>
</tr>
<tr>
<td>1.95 – 2.05</td>
<td>97.6 - 102.5</td>
<td>100</td>
</tr>
<tr>
<td>2.06 – 2.15</td>
<td>102.6 - 107.5</td>
<td>105</td>
</tr>
<tr>
<td>2.16 – 2.3</td>
<td>107.6 - 115</td>
<td>110</td>
</tr>
</tbody>
</table>
Linear dose-banding

Inconsistent relationship between bands

- Impact on dose ranges
- Impact on dose modifications
- Impact on margin of error

"It sort of makes you stop and think, doesn’t it.”
Logarithmic dose-bandimg

- **Starting or pivot point** = 100mg
 - 25% increase between one dose and two higher, or 11.8% between 2 doses
 - 20% decrease between one dose and two lower, or 10.6% between 2 doses
 - Dose interval = e.g. [94.6-105.7]
 - band dose = 100mg
 - 25% dose escalation = 125mg
 - 20% dose reduction = 80mg

Figure adapted from Hall, G. (2012)
Merits of a logarithmic scale

• Consistent relationship between doses
 – Margin of error progresses equally
 – Maximum error 6% or less
 – Better dose rationalisation?
 – IT-friendly
 – Single sequence covers all doses (1mg-100,000mg range)
 – (Standardisation between cancer centres)
Modified logarithmic dose-banding

- Volume is taken into account
 - Small adaptation with minimal impact on deviation
 - e.g. Regimen Paclitaxel 175mg/m² - 6mg/ml
 - BSA 1.73m² → 302.75mg
 - LDB = 305.2mg (+0.8%) → 50.9ml
 - 50.9ml is rounded to the nearest 1ml volume → 51ml or dose to be given 306mg (+1.06%)

<table>
<thead>
<tr>
<th>Lower</th>
<th>Upper</th>
<th>LDB dose</th>
<th>mLDB dose</th>
<th>LDB volume</th>
<th>mLDB volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>132.17</td>
<td>147.77</td>
<td>139.8</td>
<td>141.0</td>
<td>23.3</td>
<td>23.5</td>
</tr>
<tr>
<td>147.77</td>
<td>165.21</td>
<td>156.3</td>
<td>156.0</td>
<td>26.0</td>
<td>26.0</td>
</tr>
<tr>
<td>165.21</td>
<td>184.72</td>
<td>174.7</td>
<td>174.0</td>
<td>29.1</td>
<td>29.0</td>
</tr>
<tr>
<td>184.72</td>
<td>206.52</td>
<td>195.3</td>
<td>195.0</td>
<td>32.6</td>
<td>32.5</td>
</tr>
<tr>
<td>206.52</td>
<td>230.89</td>
<td>218.4</td>
<td>219.0</td>
<td>36.4</td>
<td>36.5</td>
</tr>
<tr>
<td>230.89</td>
<td>258.15</td>
<td>244.1</td>
<td>243.0</td>
<td>40.7</td>
<td>40.5</td>
</tr>
<tr>
<td>258.15</td>
<td>288.62</td>
<td>273.0</td>
<td>273.0</td>
<td>45.5</td>
<td>45.5</td>
</tr>
<tr>
<td>288.62</td>
<td>322.68</td>
<td>305.2</td>
<td>306.0</td>
<td>50.9</td>
<td>51.0</td>
</tr>
</tbody>
</table>
Impact of dose-banding

Pre dose-banding

Post dose-banding

Paclitaxel

- 99 different doses: 6 to 552 mg
- 28 different doses (vs 99)
- 7 doses = 85% of all given
Perspective on all levels

☑️ Advantage

• Treatment delays reduced/eliminated
• Control of workload
• Prepare in advance – ready to use
• Drug wastage minimised/eliminated – reduced costs
• Standardisation *(Nexuz health)*
• Prospective QC and end-product testing
Perspective on all levels

✔️ Advantage
• Treatment delays reduced/eliminated
• Prepare in advance – ready to use
• Drug wastage minimised/eliminated – reduced costs
• Standardisation (Nexuz health)
• Control of workload
• Prospective QC and end-product testing

❌ Disadvantage
• Not applicable for all molecules
• Not supported by all clinical trials
• (Impact on patients outcome?)
• Management
Management

- From ex tempore preparation towards batch production
 - Assurance of quality, safety, efficacy
 - Physicochemical stability studies and international literature analysis
 - Prospective QC:
 - Environmental monitoring of production area (e.g. temperature, pressure, particles, microbial)
 - Validation of equipment (e.g. automated processes, robots), facilities and processes
 - Qualification of operators (e.g. education, media fill, finger prints,…)
 - Extensive quality control procedures: SOPs, batch control and batch assessment, storage monitoring,…
 - End-product testing *(nice to have)*:
 - Analysis for drug identification and drug content *(pharmacopoeia standards)*
 - Sterility testing
 - Practical implications: software, automatization (e.g. prescription, preparation), labelling, storage capacity, distribution,…
 - …
Cytotoxic drugs amenable to dose-banding

• Agents:
 – 5-Fluorouracil, Cyclophosphamide, Epirubicin, Doxorubicin, Gemcitabine, Oxaliplatin, Carboplatin, Docetaxel, Paclitaxel, Irinotecan, (-Mabs, Leucovorin,…), …

• Key factors to keep in mind:
 – Cost (€)
 – Shelf-life
 – Stability (physicochemical, microbial)
 – Prescribing frequency (e.g. FOLFIRI, De Gramont)
 – Management
UZ Leuven

- Annually 15,000 Mabs made on wards
- Annually 60,000 cytotoxic preparations by CPU (Cytotoxic drug Preparation Unit)
 - Daily average production of 230 preparations
 - 60% intended for day clinics
 - Peak time between 10am-2pm
 - Mean lead time 1 hour

- Chemotherapy activities expected to increase with the anticipated burden of cancer
Cytostatic drug preparation unit

- 5 oncology pharmacists
- 6 pharmacy technicians + 2 pharmacists
- E-prescribing of chemotherapy (CPOE, KWS)
 - Order list
 - Exceptions (e.g. ICU transplant, dermatology, ophthalmology)
- 5 Biohazard Safety Cabinets
 - 3 BSC permanent in use
 - 1 BSC installed with Diana pump for preparation of 5-Fluouracil (infusion bags and elastomeric pumps) and stock solutions (e.g. Endoxan)
 - 1 spare BSC (occupied during peak time)
Future

• Building a new high standard (aseptic) drug preparation facility
 – Cleanrooms
 – Isolators

• Quality systems
 – Scanning
 – Tracking system (time slots?)
 – In process control (e.g. CATO, IV Soft)

→ Contributes to a potential higher lead time
→ Pro active decision to implement dose-banding
Project timeline

- Autumn 2014
 - Literature review
 - Presentation for pharmacy staff
- Spring 2015
 - Retrospective data analysis of prescribed chemotherapy during 2012-2014
 - Setting up a modified logarithmic algorithm for 5-Fluorouracil, Gemcitabine, Cisplatin, Oxaliplatin and Irinotecan
 - Presentations for pharmacy department, IT department, oncology board (LKI), nursing staff, and hospital management
- Autumn 2015
 - Final approval from LKI
 - Pilot digestive oncology department
- Spring 2016
 - Getting priority from IT
 - First results expected in spring 2016?
Flow

• Dose-bandung defined in background of E-prescription
• If standard dose is available, system will suggest standard dose (% deviation will be shown)
• Overrule by clinicians remain possible, but must be motivated (clinical freedom)
• Not > 6% deviation between individual calculated dose and standard dose
Practical: UZ Leuven example

Regimen “cisplatin 50mg/m² levofolinic acid 200mg/m² IV fluorouracil 400mg/m² IV + 2400mg/m²/46u infusor q2w”

-BSA: 1,81 m²
-Calculated dose: 4344mg
-Interval: [3939;4403]
-Standard dose: 4175mg
-Variation: 3,9% < 6%

Pivot point = 400mg
Practical: UZ Leuven example

- Aantal unieke doseringen (n) = 91
- 1386 bereidingen in 2014
- Aantal standaarddoseringen = 10, waarvan 4 in voorraad kunnen genomen worden (= 87%)
Expectations

- Process optimization
 - Shorter lead time (< 1 hour)
 - Increase preparations on d-X
 - Batch production – ready to use
 - Better capacity planning
 - Reduction patient waiting time
 - Increasing throughput at day clinic
 - e.g. Oxaliplatin and modified De Gramont 5-FU

Regimen time ± 3 hours
Key points

• Teamwork and effective communication
 – Support needed from oncologists and nursing staff
 • Informative and well constructed proposal
 • Determine the clinical acceptable deviation (e.g. not > 6%)
 • Guarantee clinical freedom
 – Raise awareness of drug-use process after E-prescribing

• Dynamic process
 – Periodical evaluation of clinical trends
There is *compelling rationale* for dose-banding, so take the opportunity!

Thank you for your attention
Literature

- CHATELUT, E. et al. (2012). Dose banding as an alternative to body surface area-based dosing of chemotherapeutic agents. British Journal of Cancer, 107, 1100-1106
- HENNEBICQ, S. et al. (2014). Présentation d’une démarche d’aide et de réflexion pour la mise en place de doses standards appliquée aux préparations et reconstitution d’injectables en milieu hospitalier, Journal de Pharmacie de Belgique, 1, 42-54
- UpToDate: Dosing of anticancer agents in adults [accessed on 02/07/2015]
- MATHIJSSEN, R.H.J. et al. (2007). Flat-fixed dosing versus body surface area-based dosing of anticancer drugs in adults: does it make a difference? Oncologist, 12, 913-923